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1. Introduction

Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration.
Large solar energetic particle (SEP) events are dangerous to astronauts and equipment. The ability to predict
when and where large SEPs will occur is necessary in order to mitigate their hazards.

The Coronal-Solar Wind Energetic Particle Acceleration (C-SWEPA) modeling effort in the NASA/NSF Space
Weather Modeling Collaborative [Schunk, 2014] combines two successful Living With a Star (LWS) (http://lws.
gsfc.nasa.gov/) strategic capabilities: the Earth-Moon-Mars Radiation Environment Modules (EMMREM)
[Schwadron et al., 2010] that describe energetic particles and their effects, with the Next Generation Model for
the Corona and Solar Wind developed by the Predictive Science, Inc. (PSI) group. The goal of the C-SWEPA
effort is to develop a coupled model that describes the conditions of the corona, solar wind, coronal mass
ejections (CMEs) and associated shocks, particle acceleration, and propagation via physics-based modules.

Assessing the threat of SEPs is a difficult problem. The largest SEPs typically arise in conjunction with X class
flares and very fast (>1000 km/s) CMEs. These events are usually associated with complex sunspot groups
(also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons
generated in these events travel near the speed of light and can arrive at Earth minutes after the eruptive
event. The generation of these particles is, in turn, believed to be primarily associated with the shock wave
formed very low in the corona by the passage of the CME (injection of particles from the flare site may also play
a role). Whether these particles actually reach Earth (or any other point) depends on their transport in the
interplanetary magnetic field and their magnetic connection to the shock.

2. C-SWEPA Models
C-SWEPA combines two main modules:

1. CORHEL, for Corona-Heliosphere, is a coupled set of models and tools for quantitatively modeling the
ambient solar corona and solar wind for specific time periods [Lionello et al., 2009; Riley and Lionello,
20171; Riley et al., 2012] using photospheric magnetic maps (built up from the Solar Dynamics Observatory
Helioseismic and Magnetic Imager, http://hmi.stanford.edu, magnetograms) as boundary conditions.
Versions have been released to the multiagency Community Coordinated Modeling Center (CCMC, http://
ccme.gsfc.nasa.gov) located at NASA's Goddard Space Flight Center and to the Air Force Research
Laboratory (AFRL) at Kirkland Air Force Base. C-SWEPA uses CORHEL to model CME eruptions in realistic
coronal magnetic fields with candidate CME initiation mechanisms. C-SWEPA links CORHEL with EMMREM
to explore the implications of CMEs for particle acceleration at shocks low in the corona and deduce the
effects for the space radiation environment.

2. EMMREM, for Earth-Moon-Mars Radiation Environment Module, is a tool to describe time-dependent
radiation exposure at Earth, Moon, Mars, and interplanetary space environments [Schwadron et al.,
2010]. Versions of EMMREM are running at NASA's Space Radiation Analysis Group (SRAG, http://srag-nt.
jsc.nasa.gov) and the CCMC, and produce near-real-time data (http://prediccs.sr.unh.edu) at the University
of New Hampshire (UNH). A component of EMMREM is the Energetic Particle Radiation Environment
Module (EPREM) and is designed to couple with MHD models [Kozarev et al., 2010, 2013] and compute
energetic particle distributions along a 3-D Lagrangian grid of nodes that propagate out with the solar
wind. Connected lists of node lines form magnetic field lines, which enables highly efficient computation
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Figure 1. Magnetic field configuration after flux rope insertion and subsequent relaxation. The photospheric radial field, B,
(r=Rs), is shown in grayscale. The vertical planes show j/B (in normalized units). (a) The global view of the corona with field
lines in green illustrates the field configuration prior to eruption. The j/B color coding illuminates the position of the streamer
belt and the heliospheric current sheet. The model active region is located in the Northern Hemisphere. We also focus on

the (b) active region where field lines are colored by temperature. The cold (and dense) flux rope core is visible in the center. In
this case, the j/B color coding highlights the flux rope and the presence of an additional streamer overlying the active region.

of energetic particle distribution functions at each node. EPREM has been used to solve for pickup ion
distributions [Hill et al., 2009; McComas et al., 2008, 2010] and energetic particle distributions [e.g.,
Schwadron et al., 2010; Dayeh et al., 2010] based on the focused transport equation. The code has
been used to span large spatial domains from 0.1 AU to 15 AU and energies from keV up to relativistic
GeV energies, which are important for the assessment of radiation hazards and dose-rates [e.g.,
Cucinotta et al., 2010; PourArsalan et al., 2010]. C-SWEPA extends EPREM for the modeling of shocks,
and particle acceleration.

3. Extreme SEP Event Model

We provide here an example of diffusive shock acceleration from a fast CME from the low corona. The CME
simulation employed for our analysis will be described in detail in a forthcoming publication (Torok et al.,
in preparation). Here we restrict ourselves to a brief summary of its main properties.

The simulation is performed using the MAS (Magnetohydrodynamics Around a Sphere) code [e.g., Miki¢ and
Linker, 1994; Mikic et al., 1999; Lionello et al., 1999]. The code uses spherical coordinates and advances the
standard viscous and resistive MHD equations. It incorporates radiative losses, thermal conduction parallel to
the magnetic field, and an empirical coronal heating function. The latter properties are essential for a realistic
modeling of the plasma densities and temperatures in the corona and provide the possibility to produce
synthetic EUV and soft X-ray images that can directly be compared to observations [see Lionello et al., 2009].
The boundary conditions are discussed by Linker and Miki¢ [1997] and Linker et al. [1999].

We consider an idealized solar coronal magnetic configuration, consisting of a global dipole with a field
strength of 2 G at the poles and a quadrupolar solar active region (AR) located at ~25°N of the equator. After
an MHD solution including a solar wind is obtained by relaxing the system to a steady state [see Lionello et al.,
20091, a modified version of the flux rope model by Titov and Démoulin [1999], hereafter TDM] is inserted
above the central polarity inversion line (PIL) of the AR. Including the flux rope, the model AR has a total
magnetic flux of ~7.5 x 10?2 Mx and a maximum radial field strength of ~1070 G at the photospheric level.
After a fast and strongly dynamic initial adjustment to the surrounding magnetic field, the flux rope evolves
toward a numerical equilibrium (Titov et al., submitted). After the relaxation, the free magnetic energy of the
AR is about 103 ergs, which is sufficient to power a strong eruption.

Figure 1 gives an impression of the global magnetic field configuration (panel a) and of the active region after
the flux rope insertion (panel b) and subsequent relaxation. The global configuration corresponds to solar
minimum conditions, with a relatively symmetric heliospheric current sheet that wraps about the equator.
Cold (and dense) plasma accumulates in the flux rope during the relaxation, resembling the conditions
observed in prominences.
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Figure 2. Eruption of the CME: (a) the magnetic field lines of the flux rope superimposed on the radial magnetic field in grayscale at the solar surface; (b) the outward
speed of the plasma; and (c) the negative divergence of the plasma velocity, which highlights regions of strong compression. These snapshots of the CME are taken a
few minutes after the onset of the eruption. The curved line in the top right corners of each panel indicates the height of two solar radii.

The CME is initiated by triggering the eruption of the TDM flux rope (Figure 1a) [e.g., Amari et al., 2003; Bisi
et al.,, 2010]. Aided by the strong (flare) reconnection jets that occur below the erupting rope, the resulting
CME rapidly accelerates to a velocity of ~3000km s~ low in the corona (r < 2 Rg; Figure 2b), after which it
slows down and finally travels with an almost constant speed of ~1000kms™" at heights r > 3 R;. This
simulation is coupled to a newly developed heliospheric MHD code, and the eruption is propagated to
1 AU [Lionello et al., 2013]. We found that the CME arrives at 1 AU with a speed of ~700 km s, still moving
significantly faster than the surrounding slow solar wind.

Figure 2 shows the CME eruption: Figure 2a shows the flux rope low in the corona as the CME erupts,
Figure 2b shows the outward speed of the plasma within the CME, and Figure 2c shows the divergence of the
plasma velocity. The CME-driven shock forms at a height of ~1.4 solar radii. The compression (negative
divergence in velocity) is stronger at the flanks of the CME than at its front [Ontiveros and Vourlidas, 2009;
Hudson, 2011]. Figure 2c also shows strong compression in the wake of the CME, as a consequence of
reconnection outflows [e.g., Shibata and Magara, 2011].

The EPREM model is solved to describe the effects of diffusive shock acceleration and particle acceleration
from plasma compression for energetic particles from low in the corona. The model is run out beyond 1 AU
across a 3-D domain spanning the inner heliosphere. Output is extracted from an observer at the L1 point
location. Generally, we find the most intense and rapid particle acceleration from the regions of strongest
compression at the flanks of the CME, as shown in Figure 2c. The case considered is the type of SEP event that
is both prompt and very difficult to predict. A key question is whether events of this type could lead to
extremely large radiation doses.

The model includes the effects of particle acceleration, adiabatic focusing, parallel and perpendicular
diffusive propagation, and drift. We have employed a parallel scattering mean free path that scales as
2= (/r)*"® (Ry/Rg0)'" where r is heliocentric radius, and R, is particle rigidity. The reference radial
distance is r,; =1 AU, reference rigidity is Rgo=1 GV, and reference mean free path is 1o =1 AU. This leads
to characteristic scattering mean free paths of 4 ~0.1-0.5 AU from 1 to 100 MeV at 1 AU. We have also
adopted a fixed ratio of perpendicular-to-parallel diffusion, x, /x| = 0.01 [e.g., Giacalone and Jokipii, 1999].

We used quiet time “He ion (0.10.5 MeV/nuc) observations from ACE/ULEIS for the suprathermal preevent
spectrum [Dayeh et al., 2009]. We converted the spectrum to protons assuming the flux is scaled via an
inverse square dependence, and a He/H ratio of 10%. Differential energy fluxes in Figure 3 (top right) show
that rapid particle acceleration leads to relatively high particle fluxes for energies up to ~1 GeV at 1 AU. The
abrupt rise-time is associated with shock acceleration low in the corona during the rapid lateral expansion of
the CME. By coupling the state-of-the-art MHD model (CORHEL) with EMMREM, C-SWEPA takes the next
logical step needed by the Space Weather community to predict doses associated with intense SEP radiation.

The massive parallelization of the EPREM model has allowed us to incorporate thousands of magnetic field
lines in the uniquely adaptive 3-D EPREM grid. Cross-field diffusion and drift are accurately specified through
communication across neighboring magnetic field lines in the EPREM grid [Schwadron et al., 2010; Kozarev
et al., 2010]. Cross-field diffusion is critical in contributing to broad longitudinal distributions, particularly
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Figure 3. Energetic particles are accelerated over a broad latitudinal and longitudinal spread from the CME released following
destabilization shown in Figure 2. (left top) The colored magnetic field lines show strong distortions by the plasma flow.
Using coupled MAS-EPREM simulations, we link coronal conditions, CMEs and associated shocks, and transients to (top
right) solar energetic particles, solar wind conditions (Figure 1), and (bottom) time-dependent radiation exposure. Shown
in the right top panel and bottom panels are the results for particle differential energy fluxes at 1 AU from the event shown
in Figure 2. Figure 3 (bottom) shows the resulting integrated dose equivalents for Lens and Blood Forming Organs (BFO)
behind different levels of shielding. The results here show tens of cSv even for well-shielded (1Og/cm2 Al) BFO dose
equivalents, indicating a radiation hazard that approaches the 30 day limit (25 cSv) in roughly 2 h after CME initiation.
In the simulation time history, the CME onset begins at |=1.43 h, and then strong compression and energetic particle
acceleration begins at 1.45 h. Integrated doses at prograde (Figure 3, bottom right) and retrograde observers (Figure 3,
bottom left) are shown in addition to the near-Earth observer. Note that the retrograde observer is better connected
magnetically to the CME driver, which explains the higher and more prolonged SEP fluxes at this observer.

during the evolution of particle acceleration and propagation while shock drivers propagate from low in the
corona. Figure 3 illustrates the importance of the process. Prograde and Retrograde observers are placed +60°
with respect to the L1 (near Earth) observer (Figure 3). Even a low level of perpendicular diffusion (1% of the
parallel diffusion coefficient) provides sufficient cross-field transport to affect these widely separated observers.

4, Conclusions

Described here is the development of a new project, the Coronal-Solar Wind Energetic Particle Acceleration
(C-SWEPA) Modules, which couples the CORHEL MHD models within the low corona with EMMREM for
characterizing energetic particle acceleration and subsequent formation of energetic particle hazards. We
have shown initial results of the coupling, in which an extreme SEP event with a broad longitudinal extent
was formed from a fast CME at 2-5 solar radii. This model showed large enough differential energy fluxes to
approach 30 day radiation limits even behind thick spacecraft shielding (10 g/cm?). The fact that the event
was so abrupt, with high-energy fluxes formed within only 2 h after CME onset, demonstrates the significant
potential hazard for astronauts and spacecraft. The development of accurate predictive models, response
strategies, and an understanding of the statistical probability for this type of prompt and extreme SEP event is
the focus of C-SWEPA research in the NASA/NSF Space Weather Modeling Collaborative [Schunk, 2014].
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